This function simulates uniformly distributed removal times for a specified number of individuals from the provided times vector. This might represent e.g., death or study attrition.

simulate_removal_times(
  N,
  times,
  birth_times,
  removal_min = 0,
  removal_max = max(times),
  prob_removal = 0
)

Arguments

N

The number of individuals in the simulation

times

A vector of each time step in the simulation

birth_times

A vector of birth times for each individual; defaults to NULL; if birth_times is not specified then the function will simulate uniformly distributed birth times for each individual from the times vector

removal_min

The minimum age at which an individual can be removed from the population. Defaults to 0

removal_max

The maximum age at which an individual can be removed from the population. Defaults to max(times)

prob_removal

The probability that an individual will be removed from the population during the simulation, representing e.g., death or study attrition. If set to NA, then removal time will be max(times)+1

Value

A vector of all individual's removal times is returned. NA represents no removal

See also

Examples

## Simulate random removal times for all individuals; Individuals have a 0.4 probability 
## of being removed at some time after they are 10 time steps old and before 
## they are 99 time steps old 
birth_times<-simulate_birth_times(500, 1:100, age_min=9) 
simulate_removal_times(500,1:100,birth_times, removal_min=10,removal_max=99, prob_removal=0.4)
#>   [1] 101 101  78 101 101  78  89 101  61 101 101 101 101  93  46 101  39 101
#>  [19] 101  84 101  81 101  31 101 101  82  81 101  84  85 101  97  94 101  79
#>  [37] 101 101 101  53 101 101 101 101 101 101 101  73  90  78  41 101  79  71
#>  [55] 101  78  70 101 101  41 101 101  35 101 101 101 101 101  89  40 101 101
#>  [73] 101  51  85 101 101 101 101 101 101  67  81 101 101 101  62  95 101 101
#>  [91] 101  85  74 101 101  77 101 101  56 101  98  91 101  44 101 101 101  84
#> [109] 101  98  91 101 101  96  82  83 101 101  29  64 101  51 101  32  99 101
#> [127]  68 101 101  93 101  54 101 101 101  85 101 101 101 101 101 101 101  80
#> [145] 101  83  85  51  33  49 101  83 101 101  66 101 101  41  94 101 101 101
#> [163] 101 101 101 101  62 101  20 101  70 101  99 101 101 101  95  79 101 101
#> [181] 101 101 101  81  45  75 101  97 101 101  63 101 101 101 101  62  72 101
#> [199]  94 101  94  67 101 101  46 101 101  89 101 101  97 101  97 101  95 101
#> [217] 101 101 101 101 101 101  97 101 101  93 101  75 101  96 101  55  71 101
#> [235] 101 101 101 101  74 101 101  97 101 101 101  83 101 101 101 101 101 101
#> [253] 101 101 101 101  68 101 101 101  96  56 101  94 101  90 101 101 101  57
#> [271] 101 101  96  87  36 101  73  63  37  60  99  59 101 101  92 101 101 101
#> [289]  32  49  26 101  23  87 101 101  47 101  85 101  92  45  71  32 101  69
#> [307] 101  73  49 101 101 101  86  72 101 101 101  15  28 101 101 101  55 101
#> [325] 101 101 101 101 101 101 101  83  99 101  78  65  26 101 101 101 101  99
#> [343] 101  60  75  74  77 101 101  91  62 101 101 101 101  65 101 101 101 101
#> [361]  71  83  85  97 101  70 101 101  98  60 101 101 101  65 101  97 101 101
#> [379]  85  87 101  51 101 101 101 101 101  51 101  88  51 101  67  78  86 101
#> [397]  55  84 101  34  50 101 101 101 101 101  53 101  94 101  54 101 101  93
#> [415] 101 101  93 101  58  98  91 101 101  96 101 101  75  50 101  79 101 101
#> [433] 101 101  92 101  81 101 101 101 101 101 101 101 101 101 101 101 101  92
#> [451] 101 101  52 101  98 101 101 101  85  98  98 101 101 101 101 101  96 101
#> [469]  88 101 101  79 101  90  74  82 101 101 101 101  91 101  79  94 101 101
#> [487] 101 101 101 101  53  44 101 101  87  65 101  33 101 101