Processing math: 100%

Introduction

This document provides a summary of a hierarchical statistical model of antibody kinetics, implemented in Stan. The model is designed to analyse longitudinal titre data, accounting for boosting and waning effects over time. It incorporates individual-level random effects and covariate influences on key model parameters. A full description of the model can be found in the supplementary material in the published paper using the methods described here: Russell TW et al. Real-time estimation of immunological responses against emerging SARS-CoV-2 variants in the UK: a mathematical modelling study. Lancet Infect Dis. 2024 Sep 11:S1473-3099(24)00484-5.

Usage Notes

This model is suitable for analysing longitudinal titre data with either lower, upper, both (or no) censoring and incorporates both individual-level variability and arbitrary regression structure to adjust for covariates. Users can adapt the model by specifying appropriate covariates via a R style linear model formula, priors, and data inputs relevant to their study.

Model Specification

Overview

The model describes the expected log-transformed titre value μn for individual n at time tn and titre type k, using a piecewise linear function to capture boosting and waning phases:

  • Boosting Phase: For tn<tp,n, the titre increases at rate m1,n.
  • Plateau Phase: For tp,ntnts,n, the titre remains elevated.
  • Waning Phase: For tn>ts,n, the titre decreases at rate m3,n.

Mathematical Formulation

Expected Titre Value

The expected log-transformed titre value μn is given by:

μn=t0,n+{m1,ntn,iftn<tp,nm1,ntp,n+m2,n(tntp,n),iftp,ntnts,nm1,ntp,n+m2,n(ts,ntp,n)+m3,n(tnts,n),iftn>ts,n

where:

  • t0,n: Baseline titre level for individual n and titre type k.
  • tp,n: Time to peak titre for individual n and titre type k.
  • ts,n: Time to start of waning for individual n and titre type k.
  • m1,n: Boosting rate for individual n and titre type k.
  • m2,n: Plateau rate (assumed to be zero in this model).
  • m3,n: Waning rate for individual n and titre type k.
  • tn: Observation time for individual n.
  • μn0: Ensured by taking the maximum with zero.

Observation Model

The observed log-transformed titre values yn are modeled as:

ynNormal(μn,σ)

where σ is the measurement error standard deviation.

Censoring

The model accounts for left-censoring and right-censoring:

  • Left-Censoring: For observations below detection limit L, the likelihood contribution is:

    P(ynL)=Φ(Lμnσ)

  • Right-Censoring: For observations above detection limit U, the likelihood contribution is:

    P(ynU)=1Φ(Uμnσ)

where Φ() is the cumulative distribution function of the standard normal distribution.

Hierarchical Structure

Individual-Level Parameters

For each individual n and titre type k, the parameters are modeled as:

t0,n=t0,k+𝐱n𝛃t0+σt0,kzt0,ntp,n=tp,k+𝐱n𝛃tp+σtp,kztp,nts,n=tp,n+Δts,k+𝐱n𝛃ts+σts,kzts,nm1,n=m1,k+𝐱n𝛃m1+σm1,kzm1,nm2,n=m2,k+𝐱n𝛃m2+σm2,kzm2,nm3,n=m3,k+𝐱n𝛃m3+σm3,kzm3,n

where:

  • 𝐱n: Covariate vector for individual n.
  • 𝛃: Regression coefficients for the corresponding parameter.
  • σ,k: Standard deviation of individual-level random effects for titre type k.
  • z,nNormal(0,1): Standard normal random variables.

Population-Level Parameters

The population-level parameters for each titre type k have the following priors:

Tp,k0Normal(μt0,σt0)tp,kpNormal(μtp,σtp)Δtp,kNormal(μtsμtp,σts)mp,k1Normal(μm1,σm1)mp,k2Normal(μm2,σm2)mp,k3Normal(μm3,σm3)

The standard deviations of the individual-level random effects have priors:

σkNormal(0,σp)

Regression Coefficients

The regression coefficients have the following priors:

𝛃Normal(𝟎,σβ)

with appropriate constraints for parameters that must be positive or negative.

Data and Parameters

Data Inputs

  • N: Total number of observations.
  • K: Number of titre types.
  • tn: Observation times.
  • yn: Observed log-transformed titre values.
  • 𝐱n: Covariate vector for each individual.
  • Censoring indicators for left and right censoring.

Parameters to Estimate

  • Population-level parameters: t0,k, tp,k, Δts,k, m1,k, m2,k, m3,k.
  • Individual-level random effects: z,n.
  • Regression coefficients: 𝛃.
  • Measurement error standard deviation: σ.

Priors

The prior distributions are specified based on previous studies and domain knowledge:

  • Population Means: Specified using normal distributions with means μ and standard deviations σ.
  • Random Effect Standard Deviations: Weakly informative normal priors centered at zero.
  • Regression Coefficients: Weakly informative normal priors centered at zero.
  • Measurement Error: σNormal(0,2), constrained to be positive.

Likelihood

The likelihood function combines the observation model with the censoring mechanisms:

For uncensored observations:ynNormal(μn,σ)For left-censored observations:P(ynL)=Φ(Lμnσ)For right-censored observations:P(ynU)=1Φ(Uμnσ)