This data format represents information about the observation model

Format

A list with the following columns:

names

Unique identifier for each biomarker.

model

Description of the model using the makeModel and addObservationalModel functions.

prior

Description of the prior distribution using the addPrior function.

Details

Add more data about this model here.

See also

makeModel, addObservationalModel, addPrior, for related functions.

Author

David Hodgson

Examples

# Example usage. This describes the observation model for a SARS-CoV-2 delta wave using IgG data. First define the log likelihood function, which is cauchy, with a LOD at a titre value of log10(40):

obsFunction = function(ll, titre_val, titre_est, pars) {
   if (titre_val <= log10(40)) {
       ll <- ll + pcauchy(log10(40), titre_est, pars[1], log.p = TRUE)
   } else {
       ll <- ll + dcauchy(titre_val, titre_est, pars[1], log = TRUE)
   }
   ll
}
# Now define the observation model in the format required for the rjmc package:

observationalModel <- list(
    names = c("IgG"),
    model = makeModel(addObservationalModel("IgG", c("sigma"), obsFunction)),
    prior = addPrior("sigma", 0.0001, 4, "unif", 0.0001, 4) # observational model,
)