R/plots.R
generate_cumulative_inf_plots.RdFor each individual requested, plots the median and 95
generate_cumulative_inf_plots( inf_chain, burnin = 0, indivs, real_inf_hist = NULL, start_inf = NULL, strain_isolation_times, nsamp = 100, ages = NULL, number_col = 1, pad_chain = TRUE, subset_years = NULL, return_data = FALSE )
| inf_chain | the infection history chain |
|---|---|
| burnin | only plot samples where samp_no > burnin |
| indivs | vector of individual ids to plot |
| real_inf_hist | if not NULL, adds lines to the plots showing the known true infection times |
| start_inf | if not NULL, adds lines to show where the MCMC chain started |
| strain_isolation_times | vector of times at which individuals could have been infected |
| nsamp | how many samples from the MCMC chain to take? |
| ages | if not NULL, adds lines to show when an individual was born |
| number_col | how many columns to use for the cumulative infection history plot |
| pad_chain | if TRUE, pads the infection history MCMC chain to have entries for non-infection events |
| subset_years | if not NULL, pass a vector of indices to only take a subset of indices from strain_isolation_times |
| return_data | if TRUE, returns the infection history posterior densities used to generate the plots |
two ggplot objects
Other infection_history_plots:
calculate_infection_history_statistics(),
plot_data(),
plot_infection_histories(),
plot_infection_history_chains_indiv(),
plot_infection_history_chains_time(),
plot_number_infections(),
plot_posteriors_infhist(),
plot_total_number_infections()
if (FALSE) { data(example_inf_chain) data(example_antigenic_map) data(example_inf_hist) data(example_titre_dat) ages <- unique(example_titre_dat[,c("individual","DOB")]) times <- example_antigenic_map$inf_times indivs <- 1:10 generate_cumulative_inf_plots(example_inf_chain, 0, indivs, example_inf_hist, NULL, times, ages=ages, number_col=2,pad_chain=FALSE, return_data=TRUE) }