Attempts to fit a beta distribution to a data frame of MCMC output from a previous run.
fit_beta_prior( chain_samples, par_name = "", error_tol = 999999999, try_attempts = 10, plot_fit = TRUE )
| chain_samples | the MCMC chain data frame to be fit to |
|---|---|
| par_name | the column label to fit to |
| error_tol | = 9999999999999, what's the error tolerance on the fit? Might take some tweaking |
| try_attempts | = 10 how many fitting attempts to try before giving up |
| plot_fit | = TRUE, if TRUE, plots the fit to the MCMC chain |
the model fit object as returned by optim
Other priors:
calc_phi_probs_indiv(),
calc_phi_probs_spline(),
calc_phi_probs(),
create_prior_mu(),
create_prob_shifts(),
find_beta_prior_mode(),
find_beta_prior_with_mean_var(),
find_beta_prior_with_mean(),
fit_normal_prior(),
inf_mat_prior(),
infection_history_prior(),
prob_mus(),
prob_shifts()
if (FALSE) { ## Output from a previous serosolver chain chain <- read.csv("madeup_chain.csv") results <- fit_beta_prior(chain, par_name="sigma1",plot_fit=FALSE) }