Simulates a full data set for a given set of parameters etc.
simulate_data( par_tab, group = 1, n_indiv = 100, buckets = 1, antigenic_map = NULL, strain_isolation_times = NULL, measured_strains = NULL, sampling_times, nsamps = 2, titre_sensoring = 0, age_min = 5, age_max = 80, attack_rates, repeats = 1, mu_indices = NULL, measurement_indices = NULL, add_noise = TRUE )
par_tab | the full parameter table controlling parameter ranges and values |
---|---|
group | which group index to give this simulated data |
n_indiv | number of individuals to simulate |
buckets | time resolution of the simulated data. buckets=1 indicates annual time resolution; buckets=4 indicates quarterly; buckets=12 monthly |
antigenic_map | (optional) A data frame of antigenic x and y coordinates. Must have column names: x_coord; y_coord; inf_times. See |
strain_isolation_times | (optional) If no antigenic map is specified, this argument gives the vector of times at which individuals can be infected |
measured_strains | vector of strains that have titres measured matching entries in strain_isolation_times |
sampling_times | possible sampling times for the individuals, matching entries in strain_isolation_times |
nsamps | the number of samples each individual has (eg. nsamps=2 gives each individual 2 random sampling times from sampling_times) |
titre_sensoring | numeric between 0 and 1, used to censor a proportion of titre observations at random (MAR) |
age_min | simulated age minimum |
age_max | simulated age maximum |
attack_rates | a vector of attack_rates for each entry in strain_isolation_times to be used in the simulation (between 0 and 1) |
repeats | number of repeat observations for each year |
mu_indices | default NULL, optional vector giving the index of `mus` that each strain uses the boosting parameter from. eg. if there are 6 circulation years in strain_isolation_times and 3 strain clusters, then this might be c(1,1,2,2,3,3) |
measurement_indices | default NULL, optional vector giving the index of `measurement_bias` that each strain uses the measurement shift from from. eg. if there's 6 circulation years and 3 strain clusters, then this might be c(1,1,2,2,3,3) |
add_noise | if TRUE, adds observation noise to the simulated titres |
a list with: 1) the data frame of titre data as returned by simulate_group
; 2) a matrix of infection histories as returned by simulate_infection_histories
; 3) a vector of ages
Other simulation_functions:
simulate_attack_rates()
,
simulate_group()
,
simulate_individual_faster()
,
simulate_individual()
,
simulate_infection_histories()
data(example_par_tab) data(example_antigenic_map) ## Times at which individuals can be infected strain_isolation_times <- example_antigenic_map$inf_times ## Simulate some random attack rates between 0 and 0.2 attack_rates <- runif(length(strain_isolation_times), 0, 0.2) ## Vector giving the circulation times of measured strains sampled_viruses <- seq(min(strain_isolation_times), max(strain_isolation_times), by=2)#> Warning: no non-missing arguments to min; returning Inf#> Warning: no non-missing arguments to max; returning -Inf#> Error in seq.default(min(strain_isolation_times), max(strain_isolation_times), by = 2): 'from' must be a finite numberall_simulated_data <- simulate_data(par_tab=example_par_tab, group=1, n_indiv=50, strain_isolation_times=strain_isolation_times, measured_strains=sampled_viruses, sampling_times=2010:2015, nsamps=2, antigenic_map=example_antigenic_map, age_min=10,age_max=75, attack_rates=attack_rates, repeats=2)#>#> Error in simulate_data(par_tab = example_par_tab, group = 1, n_indiv = 50, strain_isolation_times = strain_isolation_times, measured_strains = sampled_viruses, sampling_times = 2010:2015, nsamps = 2, antigenic_map = example_antigenic_map, age_min = 10, age_max = 75, attack_rates = attack_rates, repeats = 2): object 'sampled_viruses' not foundtitre_dat <- all_simulated_data$data#> Error in eval(expr, envir, enclos): object 'all_simulated_data' not found#> Error in merge(titre_dat, all_simulated_data$ages): object 'titre_dat' not found